multigrid tube - определение. Что такое multigrid tube
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое multigrid tube - определение

METHOD OF SOLVING SYSTEM OF LINEAR ALGEBRAYES EQUATIONS BASED ON THE USE OF A SEQUENCE OF DECREASING GRIDS AND OPERATOR
Multigrid; Multigrid methods; Algebraic Multigrid Method; Algebraic Multigrid; Multigrid Method; Algebraic multigrid method; Multi-grid method
  • Example of Convergence Rates of Multigrid Cycles in comparison to other smoothing operators.
  • 1019x1019px

Tube (container)         
SOFT, SQUEEZABLE CONTAINER WHICH CAN BE USED FOR THICK LIQUIDS SUCH AS ADHESIVE, CAULKING, OINTMENT, AND TOOTHPASTE
Toothpaste tube; Tube (packaging); Collapsible tube; Squeeze tube
A tube, squeeze tube, or collapsible tube is a collapsible package which can be used for viscous liquids such as toothpaste, artist's paint, adhesive, caulk, & ointments. Basically, a tube is a cylindrical, hollow piece with a round or oval profile, made of plastic, paperboard, aluminum, or other metal.
Multigrid method         
In numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior.
Tubeworm         
INDEX OF ANIMALS WITH THE SAME COMMON NAME
Tube worm (body plan); Tubeworm; Tube Worm; Tubeworms; Tube worms
·noun Any annelid which constructs a tube; one of the Tubicolae.

Википедия

Multigrid method

In numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid. MG methods can be used as solvers as well as preconditioners.

The main idea of multigrid is to accelerate the convergence of a basic iterative method (known as relaxation, which generally reduces short-wavelength error) by a global correction of the fine grid solution approximation from time to time, accomplished by solving a coarse problem. The coarse problem, while cheaper to solve, is similar to the fine grid problem in that it also has short- and long-wavelength errors. It can also be solved by a combination of relaxation and appeal to still coarser grids. This recursive process is repeated until a grid is reached where the cost of direct solution there is negligible compared to the cost of one relaxation sweep on the fine grid. This multigrid cycle typically reduces all error components by a fixed amount bounded well below one, independent of the fine grid mesh size. The typical application for multigrid is in the numerical solution of elliptic partial differential equations in two or more dimensions.

Multigrid methods can be applied in combination with any of the common discretization techniques. For example, the finite element method may be recast as a multigrid method. In these cases, multigrid methods are among the fastest solution techniques known today. In contrast to other methods, multigrid methods are general in that they can treat arbitrary regions and boundary conditions. They do not depend on the separability of the equations or other special properties of the equation. They have also been widely used for more-complicated non-symmetric and nonlinear systems of equations, like the Lamé equations of elasticity or the Navier-Stokes equations.